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Abscisic acid plays a key role in
the regulation of date palm
fruit ripening
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The date palm (Phoenix dactylifera L.) fruit is of major importance for the

nutrition of broad populations in the world’s desert strip; yet it is sorely

understudied. Understanding the mechanism regulating date fruit

development and ripening is essential to customise date crop to the climatic

change, which elaborates yield losses due to often too early occurring wet

season. This study aimed to uncover the mechanism regulating date

fruit ripening. To that end, we followed the natural process of date fruit

development and the effects of exogenous hormone application on fruit

ripening in the elite cultivar ‘Medjool’. The results of the current study

indicate that the onset of fruit ripening occurre once the seed had reached

maximum dry weight. From this point, fruit pericarp endogenous abscisic acid

(ABA) levels consistently increased until fruit harvest. The final stage in fruit

ripening, the yellow-to-brown transition, was preceded by an arrest of xylem-

mediated water transport into the fruit. Exogenous ABA application enhanced

fruit ripening when applied just before the green-to-yellow fruit color

transition. Repeated ABA applications hastened various fruit ripening

processes, resulting in earlier fruit harvest. The data presented supports a

pivotal role for ABA in the regulation of date fruit ripening.

KEYWORDS

abscisic acid (ABA), date palm, ethylene, fruit development, fruit maturation, fruit
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Highlights

The plant hormone abscisic acid (ABA) promotes date fruit

ripening, as indicated by the enhanced change in fruit color from

green to yellow and the enhanced rate of sugar accumulation.
Introduction

Phoenix dactylifera L. (date palm) is a perennial dioecious

monocot tree. The date palm thrives in semi-arid to arid regions

under severe climatic conditions, usually considered as abiotic-

stress for most plant species (Al-Mssallem et al., 2013). The date

palm fruit is a staple food for millions of people in the Middle

East, North Africa, Asia and America due to its high energy

content. Moreover, it also holds potential health benefits as a

result of the high nutrient content and bioactive compounds like

flavonoids, tannins, and other phenolic compounds (Lobo et al.,

2014; Marondedze et al., 2014). However, despite its immense

nutritional, cultural, and economic significance in these regions,

the date palm is an under-studied crop (Al-Khayri et al., 2015).

The date palm thrives in areas characterized by high

temperatures and low humidity (Al-Mssallem et al., 2013).

The prerequisites for date fruit ripening are high temperatures

and no precipitations during the phase of fruit development

(Lobo et al., 2014). Heat unit requirements for fruit ripening vary

with cultivar and can range between 1100 to 2500 hours above

18°C (Lobo et al., 2014). High humidity during the flowering

season or at later stages of fruit development results in various

physiological disorders and, hence, also limits the area of date

fruit commercial production (Yahia and Kader, 2011). In recent

years, traditional date palm regions have been affected by global

climate changes, which too often drive earlier monsoons that

have detrimental consequences on fruit quality and

marketability (Haris et al., 2019; Hussain et al., 2020). In

parallel, the rapid expansion of commercial date palm

orchards to suboptimal climate regions has challenged the

completion of fruit development and ripening before the late-

summer temperature decline, humidity upsurge, and early rain

events, which result in fruit deterioration and significant yield

loss (Awad, 2007). Facilitated fruit development, particularly

ripening, may reduce fruit deterioration and prevent the

significant yield losses caused by adverse weather events.

Traditionally, date fruit development is categorized into five

distinct stages represented by immature creamy-white

(Hababouk), immature green (Kimri), maturing yellow fruit

(Khalal), soft brown (Rutab) and hard raisin-like (Tamr)

fruits, respectively (Supplementary Figures S1, S2; Chao and

Krueger, 2007). Following pollination, there is a 4-6-week phase

of stagnation, during which no growth in fruit size or biomass

can be detected (Hababouk). Toward the end of this stage, one
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ovule in each carpellate flower develops into a fruit, whereas the

other two carpels degenerate (Slavković et al., 2016). Then the

selected ovule grows through a combination of cell divisions and

cell expansions until the fruit reaches its maximum size (Kimri).

During this stage, there is the continuous increase in reducing

sugars while moisture content is at a peak (up to 85%; Barreveld,

1993). Once the fruit reaches maximum size, the seed is fully

mature (can germinate if dispersed) and ripening of the fruit

pericarp begins (Khalal). This involves gradual chlorophyll

degradation and carotenoids processing, leading to fruit color

change from green to yellow alongside an increase in fruit

sucrose concentrations (Barreveld, 1993; Bernstein, 2004).

When the pericarp Brix value reaches about 40% (Ben-Zvi

et al., 2017), fruit color changes from yellow to brown (Rutab),

which typically starts at the distal tip and progressively continues

towards the calyx end. During this phase, sucrose is converted to

reducing sugars, the fruit softens and tannins precipitate, leading

to astringency loss. Finally, the reduction in fruit water content

yields a dry fruit with a sugar content of 70-80% (Tamr), a

phenomenal level that has been documented so far only in date

fruit (Barreveld, 1993; Lobo et al., 2014).

Fruit ripening is a complex process during which various

metabolic pathways are orchestrated in a timely manner. These

include chlorophyll breakdown, pigment synthesis, sugar

accumulation, acid degradation, aroma-related volatile

production and other processes (Peng et al., 2022; Wang et al.,

2022). Traditionally, fruit ripening is classified as climacteric vs.

non-climacteric. In climacteric fruit, ripening is characterized by

a distinct peak in ethylene production followed by an abrupt

peak in respiration. In such fruit, ethylene functions as a key

regulator, coordinately activating a wide arsenal of processes

leading to fruit ripening (Klee and Clark, 2010; Kou et al., 2021).

In non-climacteric fruits, no significant increase in respiration or

ethylene production is detected during the course of fruit

ripening. Instead, accumulating data exploring the mechanism

underlying the regulation of non-climacteric fruit ripening

suggest a key role for the plant hormone abscisic acid (ABA;

Wills and Ku, 2002; Jia et al., 2011; Zaharah et al., 2012; Ferrero

et al., 2018; Karppinen et al., 2018; Gupta et al., 2022; Li et al.,

2022). In certain cases, ethylene is involved in the regulation of

specific aspects of non-climacteric fruit ripening but not in the

coordinated induction of the entire process (Stewart and

Wheaton, 1972; Katz et al., 2004; Li et al., 2016; Chen et al.,

2018; Farcuh et al., 2018).

In dates, there is an ongoing debate about the mechanism

that regulates fruit ripening. A number of studies suggest that

date fruit ripening follows a climacteric pattern. These are based

on a small peak in ethylene production at early stage of date fruit

ripening reported for ‘Negros’ cultivar (Serrano et al., 2001), an

increase in ethylene production during fruit ripening reported

for ‘Zahdi’, ‘Derey’, ‘Sultani’ and ‘Hillawi’ cultivars (Abbas and
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Ibrahim, 1996), and additional reports demonstrating that

ethylene application facilitates date fruit ripening pre- and

post-harvest (Musa, 2001; Awad, 2007; Al-Qurashi and Awad,

2011; Al-Saif et al., 2017). However, other reports suggest that

date fruit ripening follows a non-climacteric pattern, as the rate

of ethylene production and respiration decreases during fruit

ripening (Rouhani and Bassiri, 1976; Lobo et al., 2014), the level

of proteins required for ethylene production decrease during

fruit ripening (Marondedze et al., 2014) and exogenous ethylene

application does not enhance date fruit ripening (Rouhani and

Bassiri, 1977; Aljuburi et al., 2001). The information about the

role of ABA in date fruit ripening is scarce. Awad (2007) and,

more recently Shareef and Al-Khayri, (2020), provided evidence

associating an increase in endogenous ABA concentrations with

fruit ripening in the cultivars ‘Helali’ and ‘Hillawy’ (Awad, 2007;

Shareef and Al-Khayri, 2020). However, both studies focused on

the stage of fruit color transition from yellow-to-brown (from

‘Khalal’ to ‘Rutab’) the final stage in fruit ripening; there have

been no reports regarding the role of ABA during earlier stages

of date fruit ripening. Here we aimed to investigate the

mechanism regulating date fruit ripening and specifically, to

study the role of ABA in this process.
Frontiers in Plant Science 03
Results

Fruit development and ripening of
‘Medjool’ date fruit

The natural process of ‘Medjool’ date fruit development was

monitored from pollination until harvest. During the first six

weeks post-pollination (WPP), no substantial changes in fruit

size or shape were observed (Figure 1). However, starting from 6

WPP, extensive fruit growth was detected, reaching maximum

fresh weight at about 17WPP (Figures 1A, B and Supplementary

Figures S3A, B). Then at 22 WPP, following 4 weeks (17-21

WPP) during which no significant changes were observed, fruit

fresh weight decreased until harvest (Figure 1B and

Supplementary Figure S3B). The reduction in fruit weight

during the last phase of fruit development, was in accordance

with a sharp decrease in fruit water content (WC) detected from

21 WPP until harvest (Figure 1C). Sugar accumulation in the

fruit, measured as the pericarp total soluble solids (TSS), ranged

between 10% and 15% until week 16, after which a significant

increase was detected, gradually rising to about 35% by 21 WPP,

and then sharply shooting up to about 70% in the ready-to-
A

B D

EC

FIGURE 1

Date palm fruit development. Representative fruits were sampled and photographed along the course of fruit development (Grofit 2017).
Numbers indicate weeks post-pollination (WPP; A). Fruit development was characterized through quantification of (B) fruit fresh-weight,
(C) total soluble solids (TSS; %) and water content (WC; %), (D) chlorophyll relative fluorescence and (E) L*a*b* color space parameters. Error
bars indicate standard error. Scale bar: 1 cm. The number of fruits measured at each time point was (B, D, E) n=18 or (C) n=6.
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harvest, fully ripe fruit (Figure 1C). The chlorophyll fluorescence

index revealed a continuous reduction in fruit-exocarp

chlorophyll levels, which began at 10-12 WPP (Figure 1D and

Supplementary Figure S3C), reaching a minimum value of ~0.4

fluorescence index units (SFR_G) by 19 WPP, which paralleled

the complete fruit exocarp color transition from green to yellow

(Figures 1A, D and Supplementary Figures S3A, C). In addition,

chromameter measurements of the fruit L*, a*, b* color space

revealed a distinct decline in the green color, as indicated by the

increase of a* between 17WPP and 22WPP, accompanied by an

increase in the yellow color component indicated by b*, which

peaked in 19 WPP, remained stable until 21 WPP and then

gradually decreased. Color brightness (L*) remained stable until

21 WPP, and then declined in association with fruit exocarp

color transition from yellow to brown (Figures 1A, E). Similar,

but much stronger trends were also observed in the following

year (Supplementary Figures S3A, D).

Monitoring seed development along the course of ‘Medjool’

date fruit development , provided insight into the

interrelationship between these two organs. Seed color

gradually turned brown from 17 WPP until 21 WPP, when it

was completely brown (Figure 2A). Seed growth, as measured by

dry weight, continued until 16 WPP, when the seed reached its

final biomass (Figure 2B). Seed WC decreased consistently from

13 WPP until 21 WPP and then sharply declined until harvest

(Figure 2B). In contrast to the seed, pericarp growth in dry

weight recommenced at 15 WPP and gradually increased until

22 WPP, while its WC increased until 16 WPP, remained stable

for about two weeks, declined slowly until 21 WPP, and then

dropped sharply until fruit harvest (Figure 2C). Note that seed

biomass accumulation was completed by 16WPP, shortly before

the fruit reached its maximum size, and prior to fruit color

change from green to yellow that occurred at 17-18 WPP

(Figure 1 and Supplementary Figure S3).

Altogether, the data accumulated over the two seasons,

imply two major regulatory junctures. The first, as the seed

biomass reaches the maximum weight value, about 1-2 weeks

before the pericarp tissues reach the maximum fresh weight

(Figure 2). This stage seems to coincide with the induction of

fruit ripening, associated with fruit color transition from green-

to-yellow. The second, is just before the final stage in date fruit

development, when a sharp reduction in fruit water content is

coupled with a sharp increase in pericarp sugar levels. These

changes coincide with the final fruit color transition from

yellow-to-brown, as the fruit becomes ready to harvest.
Water transport to the fruit pericarp
is interrupted prior to the
yellow-to-brown transition

In order to understand the processes regulating the dynamics

of fruit water status, the xylem flowwas followed at different stages
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in fruit development using the water-soluble, xylem-transportable

dye safranin-O. Fruit-carrying strands (Supplementary Figure S1)

were detached at different stages along the course of fruit

development, placed in a safranin O solution, and then

examined for dye appearance in both the strand vascular system

and the fruit pericarp (Figure 3 and Supplementary Figures S4,

S5). Soon after pollination, the dye was observed in all female

flowers examined, and reached either all three independent

ovaries of the female flower or only one of the three

(Supplementary Figure S4). During the date fruitlet abscission

period (5WPP), the stainingmethod easily discriminated between

fruitlets prone to abscise and those due to persist (Supplementary

Figure S5). In fruitlets that were prone to abscise, which detached

from the strand in response to very slight mechanical caress, the

dye streaming that was detected in the strand’s vascular system

avoided the fruitlet tissues. In contrast, no interruption of the dye

stream was observed in the persisting, strongly-attached fruitlets.

From 6 WPP to 18 WPP, xylem transport to the fruit was not

interrupted and the dye was observed in the vascular system of

both the strand and the fruit pericarp (Figure 3 and

Supplementary Figure S6). Yet, at 20 WPP, while the strand’s

vascular system was stained in all samples, the pericarp was

stained only in half of the fruits examined (Figure 3 and

Supplementary Figure S6). Later on, from 22 WPP until harvest,

the dye was observed only in the strand and pedicel vascular

system but not in the pericarp (Figure 3 and Supplementary

Figure S6). Interestingly, the timing of the vascular continuity

disruption, at 20-21 WPP, coincided with the sharp decline in

fruit and seedWC (Figures 1, 2 and Supplementary Figure S3) and

the sharp increase in pericarp sugar content (Figure 1C) and dry

weight (Figure 2C). To summarize, these results suggest that prior

to the yellow-to-brown fruit color change, xylem-mediated water

transport from the strand to the fruit is interrupted as part of the

natural process of ‘Medjool’ date fruit development.
Endogenous ABA levels increase during
date palm fruit development

Endogenous ABA in the fruit pericarp was undetectable

until 16 WPP. Significant endogenous ABA levels were detected

starting from 18 WPP at the onset of fruit ripening, and

continuously increased until fruit harvest (Figure 4). The rise

in pericarp ABA in parallel to the process of fruit maturation

suggests a regulatory role for this plant hormone in the ripening

process of ‘Medjool’ date fruit.
Exogenous ABA application facilitates
fruit ripening

To better understand the role of ABA, ethylene, or a

combination of the two, in date fruit ripening, individual
frontiersin.org
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fruiting strands were treated in the orchard with the selected

hormone at 14, 16, or 20 WPP. When treated at 14 WPP, prior

to a visible green-to-yellow change in fruit exocarp color, the

combined ABA + ethylene treatment triggered the most

prominent affect, as it facilitated exocarp color transition from
Frontiers in Plant Science 05
green to yellow and led to a transient increase in TSS levels

(Supplementary Figures S7, S8). When applied at 16 WPP, both

ABA and the combined ABA + ethylene had similar effect in

initiating fruit maturation, manifested by significant green-to-

yellow color changes, and an increase in TSS levels as compared
A

B

C

FIGURE 2

Date palm seed and fruit development. Representative fruits were sampled and seeds were separated from the pericarp tissue (Grofit 2017).
(A) Seeds were photographed at different stages in fruit development as indicated by number of weeks post pollination (WPP). Dry weight (DW)
and water content (WC) were quantified for both (B) seed and (C) pericarp. Note the substantial reduction in WC, in both seed and fruit
pericarp, starting from 21 WPP. Error bars indicate standard error. Scale bar: 1 cm. The number of fruit measured at each time point was n=6.
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FIGURE 3

Vascular water flux arrest from the strand to the fruit occurs as part of date fruit development. Representative fruit-bearing strands were sampled along
the course of fruit development (Grofit 2017) and movement of the dye Safranin O to the fruit was monitored (A) at different stages in fruit development
using cross and longitudinal sections prepared (B) 18, (C) 20, and (D) 22 weeks post-pollination (WPP). Scale bar: 0.5 cm. Number of sampled strands at
each time-point was n=3, each bearing 6-15 dates.
FIGURE 4

Endogenous ABA level increase throughout date palm fruit ripening. Endogenous ABA levels in representative fruits were quantified along the
course of fruit development (Grofit 2017), using LC-MS. At each time point, four independent fruits served as biological replicates. ABA content
was normalized to fresh weight.
Frontiers in Plant Science frontiersin.org06
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to ethylene and control treatments (Figure 5 and Supplementary

Figure S9). Nevertheless, the impact of the exogenously applied

ABA or ABA + ethylene at 14 and 16 WPP was transient, lasting

for only 1-2 weeks after treatment (Supplementary Figures S8,

S9). When applied at 20 WPP, none of the hormone treatments

affect fruit development, as most of the fruit had already

launched their natural maturation processes (Supplementary

Figure S10).

Repetitive exposure (4 applications over 13 days) of whole

clusters to the ABA treatment, starting on 17 WPP, when the

green fruit is at its maximum size and before the green-to-yellow

transition, led to yellowing of all fruits, while all control fruits

remained green (Figures 6A, B, D). In addition, TSS levels of all

ABA-treated fruits were significantly higher compared to those

of control fruits (Figure 6C).

Harvest of this experiment, Grofit 2020, began at 25 WPP,

and was done in 5 rounds. Total fruit yield was in the range of

6.1-8.5 kg cluster-1, with some tendency for higher yields in the

ABA-treated clusters (Supplementary Figure S11A). While the
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number of fruits per cluster substantially fluctuated across

treatments (Supplementary Figure S11B), mean fruit weight at

harvest was significantly greater in samples treated with the

higher ABA levels (6 and 9 g L-1 ProTone™), as compared to

control and water-applied fruit (26.8 g fruit-1 vs. ~22.6 g fruit-1

and 22.2 g fruit-1 for non-treated and water-treated control;

Supplementary Figure S11C). Interestingly, fruit treated with a

surfactant (Triton-X100) or with the lower ABA level (3 g L-1

ProTone™) displayed intermediate values regarding fruit

weights (24.5 g and 25.4 g, respectively). When compared to

controls, a much greater proportions of the ABA-treated fruit

yield was harvestable in the first round (20-32%, compared to 8-

15% of the total yield, respectively). On treatment with one of

the two higher ABA concentrations tested, more than 60% of the

fruit were harvested in the 1st and 2nd rounds, while in the non-

treated and surfactant-treated control, 60-65% of the fruit were

harvested in the 3rd and 4th rounds. Harvest from clusters treated

with water, surfactant or a low ABA dose distributed quite

impartially, with about 80% of the fruit collected in rounds 2
FIGURE 5

The effect of exogenous ABA and ethylene treatment applied at 16 WPP, on date fruit development. Date fruits were treated with a single

treatment of ABA (ProTone™), ethylene (Ethrel®) or a combination of both, at 16 WPP on the tree (Grofit 2017). (A) Representative fruits from
each treatment group were sampled and photographed one week after the treatment. Fruit ripening was characterized through quantification of
(B) chlorophyll relative fluorescence, (C) total soluble solids (TSS; %), and (D) color index. Error bars and “±” indicate standard error. Letters
represent Tukey-Kramer multiple comparison test (B; p-value < 0.0001, C, D; p-value < 0.05). Scale bar: 1 cm. Number of fruits measured per
treatment at each time-point: (B, D) n=12, or (C) n=6.
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to 4. In the fifth round of harvest, only residues were left (up to

5% of the total yield), with no significant differences between

treatment-groups (Figure 7C). Thus, repetitive ABA treatments

accelerate date fruit ripening and precede fruit harvest.

In addition, it is noteworthy that the fraction of yellow fruit

that easily abscised at harvest was much greater among the

clusters exposed to repetitive ABA treatments, reaching 20–30%
Frontiers in Plant Science 08
of the fruit, compared to about 3% in the controls

(Supplementary Figure S12). Moreover, the fraction of

partially brown fruit was higher among the control groups

(14–18%), as compare to ABA-applied fruits (10-11%).

Especially notable was the scarcity (less than 1%), of partially

dry and dry brown fruit fractions (hydrated and dry ‘Tamr’) and

the absolute dominance of hydrated brown fruit (‘Rutab’) in the
A

B

D

C

FIGURE 6

Effects of exogenous ABA treatment on date fruit maturation. Whole date fruit clusters were treated every three days (four treatments in total)

with 3, 6 or 9 grL-1 ProTone™ (ABA), starting at 17 WPP, on the tree (Grofit 2020; A; upper panel). Representative fruits per treatment were
sampled and photographed one week after the last treatment (A; lower panel). Fruit ripening was characterized through quantification of
(B) chlorophyll relative fluorescence, (C) total soluble solids (TSS; D) and the L*a*b* color space parameters. Error bars and “±” indicate standard
error. All data were analyzed using Tukey-Kramer multiple comparison test (B, C, D); * indicates p-value < 0.5; *** indicates p-value < 0.0001.
The number of fruits measured per treatment at each time point was n=30.
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ABA-treated samples, as compared to 8-15% in the controls

(Supplementary Figure S12), suggesting that ABA may also

affect the last stage of fruit dehydration. Subsequently, visual

and spectral differences in fruit appearance were apparent; the

surface of ABA-applied fruits was considerably smoother and

darker compared to control fruit (Figures 7F, G). Last, repetitive

ABA treatments, like the surfactant alone, reduced the fraction

of prematurely-dry fruit in comparison to the non-treated or

water-treated controls (<2% vs. 10-20%; Figures 7D, E and

Supplementary Figure S12). Taken together, repetitive ABA

treatments can accelerate date fruit ripening.
Frontiers in Plant Science 09
Discussion

The current study, aimed at characterizing the role of ABA

in date fruit ripening, identified gradual increase in endogenous

ABA levels during natural fruit ripening. One-time exogenous

ABA application accelerated the process in a transient manner,

while repetitive ABA treatments enhanced fruit ripening and

resulted in early fruit harvest. Interestingly, ethylene treatment

did not promote fruit ripening, unless applied at very early stages

in fruit development together with ABA, suggesting a possible

role for ethylene in the very early stages of ripening induction.
FIGURE 7

Pre-harvest ABA treatments promote fruit harvest and result in darker fruit. In the season of 2020, whole date fruit clusters were treated pre-

harvest every three days (four treatments in total) with ABA (ProTone™; 3, 6 or 9 g/L), and Triton™ X-100, starting from 17 WPP. At harvest, five
ripening classes were defined by (A) appearance and (B) total soluble solids % (TSS). (C) The weight of the fruit harvested from the treated
clusters at each of the five harvest rounds (one round per week), is shown. (D) Typically, the first harvested fruits of this very arid habitat, are not
marketable since they are too dry and do not ripen properly. (E) The percentage of such nonmarketable fruits in the first harvest round of the
season was calculated. (F) Fruits treated with ABA appeared darker then the non-treated fruits. (G) Representative fruits per treatment were
sampled 77 days after treatment, photographed, and measured for L* parameter of the L*a*b* color space. Error bars indicate standard error
(B, C). X mark indicates mean (E, G). Data was analyzed using Tukey-Kramer multiple comparison test (B; p-value < 0.0005, C and E; p-value <
0.05, G; p-value < 0.0001). The number of fruits measured for each class was n=6 (B). The number of clusters harvested per treatment at each
time-point was n=10 (C, E). The number of fruits measured for each treatment was n=30 (G). Scale bar: 1 cm (A, D, F).
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Altogether, the presented data support a key role for ABA in the

regulation of the timing and progress of the complex process of

date fruit ripening.
Endogenous ABA in date fruit ripening

While the role of ABA in the regulation of fleshy fruit

ripening is well established, in dates this kind of information is

scarce. In the present study, the endogenous ABA levels in date

fruit pericarp are shown to rise at the point of fruit green-to-

yellow transition, at about 18 WPP, and to consistently increase

throughout fruit ripening (Figure 4). A similar pattern of

constant gradual increase in ABA levels, was reported also for

fruit ripening in oil palm, strawberry, litchi, sweet cheery and

other fruit species (Wang et al., 2007; Tranbarger et al., 2011;

Symons et al., 2012; Yeap et al., 2017; Li et al., 2022; Vignati et al.,

2022). An alternative pattern, in which a transient increase in

ABA levels at very early stages of fruit maturation triggers the

onset of fruit ripening-related processes, was identified in

various fleshy fruit species, including blueberries, grapes,

mango, tomato, cucumber, persimmon, and others (Wheeler

et al., 2009; Zaharah et al., 2012; Karppinen et al., 2013; Leng

et al., 2014). In these species, an ethylene peak often

accompanies the ABA peak suggesting that both hormones

participate in triggering fruit ripening. The pattern of a

continuous buildup of endogenous ABA levels, as shown here

for date fruit, suggests a relentless and likely multi-layered rather

than a transient role for ABA in the regulation of fruit

maturation and ripening. Additionally, in oil palm, three

ABA-responsive transcription factors were shown to be

activated by WRINKELD 1, a master regulator that activates

oil synthesis-associated genes, as part of the process of oil palm

fruit ripening (Yeap et al., 2017). Altogether, the pattern of

endogenous-ABA accumulation during the natural process of

date fruit development suggests a complex role for ABA in the

regulation of date fruit ripening.
Exogenous ABA applications enhance
date fruit ripening

To further characterize the role of ABA in triggering fruit

maturation, date palm samples were exposed to single or repeated

exogenous ABA application. The stage at which the hormones

were applied had an immense impact on the results obtained.

When hormone treatment was applied at 14 WPP, a synergetic

effect of the combined ABA and ethylene treatment was observed

on fruit exocarp color change (green-to-yellow; Supplementary

Figure S7), supporting a role for both hormones in early induction

of date fruit ripening. In contrast, when applied later in fruit

development (16 and 20 WPP), this synergistic hormonal effect

was not detected (Supplementary Figures S9, S10). Similar synergy
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between ABA and ethylene was identified in several studies on

fleshy fruit ripening in either climacteric or non-climacteric fruits

(Zhang, 2014). In litchi, defined as a non-climacteric fruit, ABA did

not enhance fruit maturation when applied alone; however, when

combined with ethylene, it enhanced both chlorophyll degradation

and anthocyanin accumulation, supportive of enhanced fruit

ripening (Wang et al., 2007). A reciprocity/cross-talk between

ethylene and ABA was also reported for grape vine, tomato, fig

and persimmon (Zhang et al., 2009; Sun et al., 2010; Zhao et al.,

2012; Lama et al., 2019). In date palms, a small peak of ethylene

production was previously reported at about seed maturation

(Serrano et al., 2001); yet, so far, this peak was not assigned

function in the regulation of fruit ripening. The possibility that a

transient peak in ethylene production emerges from the seed-

triggering ABA production in the fruit pericarp and thereby

induces the process of fruit ripening, requires further research.

As fruit development proceeded, ABA alone was sufficient to

enhance date fruit ripening, as indicated by both chlorophyll

degradation and sugar accumulation (Figures 5, 6 and

Supplementary Figure S8). Similar results were reported for

other crops. For instance, in mango, which is a climacteric

fruit, exogenous ABA treatment promoted fruit coloration and

softening compared to control fruit, while an opposite effect was

obse rved when ABA syn the s i s was inh ib i t ed by

nordihydroguaiaretic acid (NDGA) treatment (Zaharah et al.,

2012). In this context, it is noteworthy that in our experimental

setting neither Fluridon, inhibiting the carotenoid pathway, nor

NDGA inhibited date fruit ripening (data not shown). In peach,

also a climacteric fruit, exogenous ABA application facilitated

sugar accumulation (Kobashi et al., 2001). Notably, in the

current study, single ABA application displayed a short-term

effect on the ripening process and hence, multiple applications

were required to achieve durable enhancement of fruit ripening

and advance fruit harvest. An exception was noted for date palm

samples treated at 20 WPP, which showed no measureable effect

of ABA on fruit ripening (Supplementary Figure S10),

suggesting that ABA is sufficient to facilitate date fruit

ripening when applied at the appropriate time during fruit

development. Taken together, before practical ABA application

is considered, it will be essential to determine the optimal

treatment schedule and to improve methodologies aiming to

enhance the penetration of the active substance into the fruit and

to ensure sufficient duration of its impact.
The role of ethylene in date fruit ripening

Traditionally, fruit ripening is classified as climacteric or

non-climacteric. Climacteric fruit ripening is characterized by a

distinct ethylene peak, which is followed by an abrupt peak in

respiration. In climacteric fruit ripening, ethylene functions as a

key regulator, coordinately activating a wide arsenal of processes

leading to fruit ripening. Hence, ethylene application efficiently
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induces fruit ripening in climacteric fruits (Kou et al., 2021; Peng

et al., 2022). In non-climacteric fruit, ethylene may induce

specific aspects of fruit ripening but not the entire coordinated

process (Fan et al., 2022). In dates, there is an ongoing debate

about the mechanism regulating fruit ripening. While a number

of studies report an increase in ethylene production during fruit

ripening (Abbas and Ibrahim, 1996; Serrano et al., 2001), others

report a decrease in ethylene production and fruit respiration

during fruit ripening (Rouhani and Bassiri, 1976; Feygenberg

et al., 2010; Lobo et al., 2014). Moreover, a number of studies

report that ethylene application facilitates date fruit ripening

pre- and post-harvest (Musa, 2001; Awad, 2007; Al-Qurashi and

Awad, 2011; Al-Saif et al., 2017), while others report that

exogenous ethylene application does not facilitate fruit

ripening (Rouhani and Bassiri, 1977; Aljuburi et al., 2001).

Even though ethylene production was not measured as part of

the current study, exogenous ethylene application at different

stages in fruit development (14, 16, 20 WPP) was not sufficient

to induce or accelerate date fruit ripening at any of the stages

examined (Figure 5 and Supplementary Figures S7-S10).

Combined with the pronounced effect detected for ABA in

accelerating date fruit ripening, the findings of the current

research suggest that fruit ripening in date palm cv. ‘Medjool’

follows a non-climacteric pattern.
The final stage in fruit ripening is
associated with disruption of xylem-
mediated water transport

Due to the harsh arid environment in which dates grow,

water dynamics during date fruit development and ripening has

been the focus of many studies (Aldrich et al., 1946; Rygg, 1946;

Gribaa et al., 2013; Garcia-Maquilon et al., 2021). The

modifications in date fruit water status throughout its

development are unique; from the initial phase of fruit growth,

water levels rise constantly until they reach very sharp maxima

as the fruit reaches its final size. From that point and until

harvest, fruit WC continuously declines (Bernstein, 2004; Chao

and Krueger, 2007; Lobo et al., 2014), in parallel to the gradual

increase in fruit pericarp ABA levels (Figures 1, 2, 4). The

relationship between water stress and ABA levels is well

studied in a number of fleshy fruit crops (González and Iusem,

2014). A key component identified in that relationship is the

water stress-inducible ABA STRESS RIPENING (ASR)

transcription factor, which has been well-linked to ripening

initiation in crops such as grape, tomato, strawberry, banana

and others (Çakir et al., 2003; Gupta et al., 2006; Golan et al.,

2014; Jia et al., 2016; Zhao et al., 2021). ABA also regulates the

function of various aquaporins, which mediate water transport

between cells and tissues (Fang et al., 2019), including in

developing fruit (Breia et al., 2020). ABA has been also

recently implicated in the regulation of the fruit cuticle
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deposition in orange (Wang et al., 2016) and in cucumber

(Wang et al., 2015) which adds additional aspect to the way it

might regulate fruit water status.

After water loss initiation, the next interesting point in water

kinetics is the rapid decline in fruit WC just before fruit color

transition from yellow to brown. While, xylem-mediated water

flux into the fruit was maintained until 20 WPP, at 21-22 WPP,

it stopped abruptly just before to the yellow-to-brown transition

(Figure 3 and Supplementary Figures S4, S5). Modifications in

the vascular tissue during fruit development and ripening were

recently identified and thoroughly investigated in grapes. At

véraison, the onset of fruit ripening, water flux into the fruit

gradually shifts from the xylem to the phloem (Bondada et al.,

2005; Choat et al., 2009; Keller et al., 2015). A more recent study

suggested a scenario, in which a discharge of surplus phloem

water via berry transpiration and/or xylem backflow to the

pedicel, may be necessary to facilitate natural grape ripening

as well as sugar accumulation (Zhang and Keller, 2017).

Interestingly, a partial fracture of the cluster’s stem, which

considerably decreased the water flow to the fruit, was shown

to accelerate the ripening of ‘Medjool’ date fruit, when executed

at the yellow-to-brown transition, also known as the ‘Khalal-to-

Rutab’ shift, suggesting that severe water deficit can trigger the

final stage of ripening in mature dates (Bernstein, 2004).

Considering the above, we hypothesize that water loss starting

at ‘color break’might elicit a stress signal that induces a series of

events facilitating fruit ripening, specifically the last phase of the

yellow-to-brown transition.
Is ABA a multi-tasking hormone?

Soluble sugar levels in ripe fleshy fruits display large variations

across species (Coombe, 1976), with very low °Brix (~ 4) in

tomato (Wills and Ku, 2002), moderate (~11°Brix) in peach

(Bregoli et al., 2002), and high (~24°Brix) in wine grapes

(Bregoli et al., 2002; Wills and Ku, 2002; Bondada et al., 2017).

Date palm fruit are unique in this sense, reaching 44–50° Brix at

full maturity, as the fruit turns from yellow-to-brown (Figure 1C),

and 70 – 80° Brix at the ripe-dry ready-to-harvest stage, also

known as ‘Tamr’ (Chao and Krueger, 2007; Lobo et al., 2014).

Such high °Brix levels are found only in grape raisins (Aung et al.,

2002). In both species, the upsurge in fruit sugar concentration is

strongly correlated with a significant decline in the fruit WC

(Figure 1C; Aung et al., 2002). Within the well-established pivotal

and comprehensive role of ABA in the regulation of non-

climacteric fruit ripening (Pilati et al., 2017; Forlani et al., 2019;

Fuentes et al., 2019; Bai et al., 2021), of particular interest is its

capacity to integrate changes in fruit sugar metabolism and water

status as part of fruit maturation and ripening. Solid evidence

suggest a regulatory role for sucrose, in coordination with ABA

and other hormones, in the regulation of fruit ripening in grape,

strawberry, tomato, apple and peach (Falchi et al., 2013; Jia et al.,
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2016; Jia et al., 2017; Ma et al., 2017; Olivares et al., 2017). In non-

climacteric fruit, some evidence suggest a regulatory role for

sucrose transporters (SUT genes), through which sugars and

ABA interact to induce and govern sucrose accumulation and

fruit ripening (Wang et al., 2013). Additionally, ASR gene

expression was upregulated by both sucrose and ABA and even

more by their combination, which subsequently promoted fruit

ripening, whereas RNA interference delayed it (Jia et al., 2016).

Recently, a study focusing on elucidating ABA signaling pathway

in dates identified four PYRABACTIN-LIKE 8 (PYL8) genes,

among the 12 genes encoding for the ABA receptor that are

expressed during date fruit development. Among these, PYL8-

LIKE 27 was the most highly expressed at the yellow-to-brown

transition (Supplementary Figure S2; Garcia-Maquilon et al.,

2021). The identity of the signal that regulates the timing of the

natural increase in fruit pericarp ABA levels and how it is related

to the onset of fruit ripening remains to be determined. Various

hypotheses can be raised; i) a naturally induced water loss triggers

a continuous stress signal, which leads to ABA production and

consequently facilitates date fruit maturation and ripening, ii)

cross-talk with other hormones that affect ABA metabolism, and

last, iii) sucrose levels may regulate ABA accumulation.
Practical implementations

The observations presented here may have significant

practical implications. The date palm industry in Pakistan and

India suffers from heavy summer monsoons occurring just before

fruit ripening (Adel et al., 2015; Baidiyavadra et al., 2019). In

northern Africa, early autumn rains and suboptimal temperature

often overlap with the date ripening season (Musa, 2001; Awad,

2007; Lobo et al., 2014; Al-Khayri et al., 2015). In both cases,

significant yield proportions are lost. Substantial variability in fruit

ripening within a cluster, tree, and orchard cause considerable

losses due to unripe or overripe unmarketable fruit. Within-

cluster variability also necessitates many rounds of harvest,

which is costly and limits date tree orchard size (Musa, 2001;

Awad, 2007; Lobo et al., 2014; Al-Khayri et al., 2015). The ability

to hasten date fruit development and regulate the timing of fruit

harvest may facilitate expansion of date fruit orchards and

cultivation area to habitats with sub-optimal growth conditions.
Conclusions

Quite similar to véraison in grapes, seed maturation in date

palm apprises the onset of fruit maturation and ripening.

Endogenous ABA levels in date fruit pericarp gradually rise

from the green-to-yellow transition, which is equivalent to

véraison in grapes, until harvest. Exogenous ABA applications

directly associate this hormone with fruit ripening, opening

opportunities for practical influence on fruit harvesting time
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and fruit quality at harvest. Based on the data presented in the

current study, we hypothesize that fruit ripening in ‘Medjool’

date palm follows a non-climacteric pattern and that ABA

functions as a central regulator of this process. Further

research is required in order to learn about the role of

additional hormones in the regulation of date fruit ripening. It

will be interesting to determine what regulates the timing and

level of ABA accumulation in the fruit pericarp, how it affects the

onset of fruit ripening and how it regulates downstream

metabolic pathways induced/suppressed as part of the complex

process of date fruit ripening.
Materials and methods

Plant material

All experiments were conducted on date trees of the cv.

‘Medjool’ at Grofit orchard, located in the Rift Valley at South

Arava district (29° 56′ 27.02″ N, 35° 3′ 52.61″ E, 118 m above sea

level), Israel. The experiments were conducted over three growing

seasons (2017, 2018 and 2020), on 6-year-old tissue-culture-

generated trees, starting from the second year of commercial

harvesting. The soil was sandy, composed of 95% sand and 5% silt.

In 2017, pollination was carried out with diluted pollen (25%

pollen, 75% talc powder) for fruit load control. In 2018 and 2020,

the pollen dilution was different (20% pollen, 80% talc powder).

The pollen used in the current study was a mix of random pollen

from different male date trees located in Grofit and the

neighboring orchards. In all years, female inflorescences were

trimmed as a fruit load management tool.
Monitoring of fruit development and
ripening over the growing season

Seasonal observations and monitoring of fruit development

were carried out from pollination to the beginning of commercial

harvest during the years of 2017 and 2018. All time points are

presented as weeks post-pollination (WPP). The seasonal

observation of date fruit development was conducted in a

randomized block design, with 6 single-tree blocks. Four clusters

per tree were chosen at anthesis and used for strands and fruit

sampling. Eventually, each cluster carried approximately 200 fruits.
Pre-harvest single-dose treatment with
plant hormones

During the season of 2017, the hormone treatment

experiment was laid out in randomized block design. Six trees

were chosen at anthesis. One cluster per tree (six trees in total)

was used, in which 3-5 strands (with a minimum of 18 fruit per
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treatment) were used for each treatment. For hormone

treatments, 3-5 strands were dipped in plastic bags filled with

hormone solution for 15 s, while avoiding exposure of other

parts of the tree to the solution. The treatments included

untreated control, water control, surfactant control - 0.1%

Triton X-100 (Sigma-Aldrich), 6 g L-1 (containing 20% S-ABA

as the active component) ProTone™ SG (Valent BioSciences) +

Triton X-100 (0.1%), 2.1 ml L-1 Ethrel™ (Bayer) + Triton X-100

(0.1%) and a combined treatment of 6 g L-1 ProTone™ + 2.1 ml

L-1 Ethrel™ + Triton X-100 (0.1%).
Pre-harvest multiple-dose treatment
with plant hormones

The 2020 experiments testing pre-harvest exogenous ABA

application were extended to whole clusters. Comparable trees in

the Grofit orchard were selected. Six uniform clusters from each

tree (pollinated in the same week, and each carrying 300 fruits, on

average) were chosen, and each one was designated to a different

treatment. Thus, the experiment was performed in a randomized

block design with 10 trees (each one is considered a block) and six

treatments per tree. The treatments included untreated control,

water control, 0.1% Triton X-100 (Sigma-Aldrich), or 3, 6, or 9 g

L-1 (containing 20% S-ABA as the active ingredient) ProTone™

SG (Valent BioSciences) + Triton X-100 (0.1%). During

application, each cluster was insulated using a plastic conus, to

avoid undesired spray to neighboring treated clusters. Clusters

were sprayed to drainage to ensure full coverage. Treatments

were applied at dawn, at the daily peak of relative humidity and

minimum wind, to maximize retention of the spray on the fruit

surface. Applications were repeated 4 times, starting in 17 WPP,

once every 3 days. One week after the first application, 3

representative fruits of each cluster were sampled and used for

color and Brix determinations. Harvest was carried out in 5

rounds (once a week), upon occurrence of earliest ripening

symptoms (one week before the start of commercial harvest in

the plot). Each cluster was carefully shaken, and the fallen fruit

were collected from its net-bag. All fruit from each cluster were

counted and sorted according to their ripening stage, as follows:

premature dehydration (PMD); yellow-ripe (‘Khalal’); partially-

brown; hydrated-brown (‘Rutab’); partially-dry brown (hydrated

‘Tamr’); and, dry brown (dry ‘Tamr’; Figure 7A and

Supplementary Figure S12). This classification was supported

by fruit TSS, which steadily increased with the rise in ripening

stage (Figure 7B). All fruits were weighed and the yield was

calculated (Figure 7B).
Fruit diameter and weight measurements

Fruit dimensions were measured from top to bottom (calyx

to stigma trace; length) and along the mid-fruit equator
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(diameter) using a high-precision digital caliper (MRC, MT-

110051). Fresh and dry weight of the fruit and seed were

measured using a precision balance (LE Series, Sartorius or

Boeco, BPS 41 Plus). For dry weight and WC calculation,

samples were dehydrated using an air-vacuumed oven (Zenith

lab, DZF-6050 or WTC Binder, VD-53) for a minimum of 48 h,

at 70°C.
Total soluble solids measurements

For destructive TSS (Brix units) measurement, fruit

pericarp was scraped from top to bottom (from the proximal

to the distal side of the fruit). For TSS values <32,

measurements were taken using a digital refractometer PR-

32a (Atago Co. Ltd.), while for TSS values >32, measurements

were taken using an optical refractometer MOD. 103, 0-80

BRIX (Giorgio Bormac S.R.L.).
Fruit color measurements

Relative fluorescence of detached fruit was measured using a

hand-held fluorimeter to estimate chlorophyll levels [Multiplex

Research, Force-A; as previously described by (Bahar et al.,

2012)]. The chlorophyll index representing fruit exocarp

chlorophyll levels is the calculated SFR_G (simple fluorescence

ratio – green excitation) value. Spectral color, using the L*, a*, b*

color space coordinates, was measured using either an i1 Pro Rev

E Chroma meter (x-rite, PANTON® during the 2017 season) or

a CR-400 Chroma meter (Konica Minolta, Inc. during the 2018

and 2020 seasons).
Histology

Whole fruit and pericarp surfaces were examined using a

binocular dissection scope (Nikon, SMZ 1270) and imaged with

an attached camera (NIKON, DS-Ri2). Samples were stained

with the water-soluble Safranin-O dye (Sigma-Aldrich) to

examine xylem transport towards the fruit. Six strands were

sampled at each time point along the course of fruit

development. Three of the strands were placed for 4 h in 5 ml

1% Safranin-O solution and three were placed in 5 ml deionized

water as a control. To monitor Safranin-O transport along the

xylem and into the fruit pericarp tissue, a longitudinal section of

the fruit (through the attached strand segment and at the center

of the calyx to the distal end, the stigma trace) and a cross-

section (at the middle between the calyx and the distal end) were

generated and photographed using zoom stereomicroscope

(SMZ1270, Nikon) equipped with a camera (DS-Ri2, Nikon).

Fresh lemon juice was applied to avoid oxidation and pericarp

browning as a result of the cut.
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ABA quantification

Pericarp tissue (Grofit, 2017 season) was collected at

different stages in fruit development (12, 14, 16, 18, 20, 22

and 24 WPP) and frozen in liquid nitrogen. The tissue was

ground to a fine powder using a mortar and pestle, after which,

200 mg were weighed and placed in a 2 ml Eppendorf tube

containing 1 ml extraction solvent (ES; 80% methanol: 19%

water: 1% acetic acid) supplemented with 20 ng of ABA isotope

standard (Olchemim). The tube was incubated on Vortex for 60

min at 4°C and the supernatant was collected following

centrifugation. The pellet was washed twice with 0.5 ml ES.

The collected supernatant was concentrated with a speed-vac

concentrator (5301, Eppendorf), at 30°C. The samples were

then dissolved in 200 mL solution of 50% methanol. Following

centrifugation, the supernatant was filtered through a 0.22 µm

PVDF syringe filter and then subjected to LC-MS analysis

conducted using a UPLC-Triple Quadrupole-MS (Waters

Xevo TQ-MS). Separation was performed on a Waters

Acquity UPLC BEH C18 1.7 µm 2.1x100 mm column with a

VanGuard precolumn (BEH C18 1.7 µm 2.1 x 5 mm).

Chromatographic and MS parameters were as follows: the

mobile phase consisted of water (phase A) and acetonitrile

(phase B), both containing 0.1% formic acid in gradient elution

mode. The flow rate was 0.3 ml min-1, and column temperature

was 35°C. All analyses were performed using the ESI source in

positive ion mode at the following settings: capillary voltage 3.1

KV, cone voltage 30 V, solvation temperature 400°C, solvation

gas flow 565 L/h, source temperature 140°C. Quantification was

performed using MRM acquisition by monitoring the 247/187,

247/173 (RT=3.92, dwell time of 78 msec for each transition) for

ABA, and 253/206, 253/234 (RT=3.92, dwell time of 78

msec) for d6-ABA (used as internal standard). Acquisition

of LC-MS data was performed using the MassLynx V4.1

software (Waters).
Statistical analysis

The Tukey-Kramer HSD test was performed via JMP Pro

software (Statistical Discovery™, SAS).
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